Filtering the Maximum Likelihood for Multiscale Problems
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Drift Estimation for Multiscale Diffusions
We study the problem of parameter estimation using maximum likelihood for fast/slow systems of stochastic differential equations. Our aim is to shed light on the problem of model/data mismatch at small scales. We consider two classes of fast/slow problems for which a closed coarse-grained equation for the slow variables can be rigorously derived, which we refer to as averaging and homogenizatio...
متن کاملMultiscale Variance Stabilization via Maximum Likelihood
This article proposes maximum likelihood approaches for multiscale variance stabilization (MVS) tranforms for independently and identically distributed data. For two MVS transforms we present new unified theoretical results on their Jacobians which are a key component of the likelihood. The new results provide (i) a deeper theoretical understanding of the transforms and (ii) the ability to comp...
متن کاملMaximum-likelihood affine cepstral filtering (MLACF) technique for speaker normalization
We present a novel technique of minimizing the acoustic variability of speakers by transforming the features extracted from the speaker’s data to better fit the recognition model. The concept of maximum-likelihood affine cepstral filtering (MLACF) will be introduced for feature transformation, along with solutions for the transformation parameters that maximize the likelihood of the test data w...
متن کاملLeast squares methods in maximum likelihood problems
It is well known that the GaussNewton algorithm for solving nonlinear least squares problems is a special case of the scoring algorithm for maximizing log likelihoods. What has received less attention is that the computation of the current correction in the scoring algorithm in both its line search and trust region forms can be cast as a linear least squares problem. This is an important observ...
متن کاملClosed-Form Maximum Likelihood Estimates for Spatial Problems
This manuscript introduces the matrix exponential as a way of specifying spatial transformations of the data. The matrix exponential spatial specification (MESS) simplifies the log-likelihood, leading to a closed form maximum likelihood solution. The computational advantages of this model make it ideal for applications involving large data sets such as census and real estate data. The manuscrip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multiscale Modeling & Simulation
سال: 2014
ISSN: 1540-3459,1540-3467
DOI: 10.1137/140952648